Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur J Immunol ; 52(3): 484-502, 2022 03.
Article in English | MEDLINE | ID: covidwho-1555185

ABSTRACT

To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2, we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase, and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis. Hypoxia-inducible factor 1α (ΗΙF-1α) is stabilized in such cells, and it controls the level of glycogen phosphorylase L (PYGL), a key enzyme in glycogenolysis. Inhibiting PYGL abolishes the ability of neutrophils to produce NET. Patients displayed significant increases of plasma levels of molecules involved in the regulation of neutrophils' function including CCL2, CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-γ. Our data suggest that metabolic remodelling is vital for the formation of NET and for boosting neutrophil inflammatory response, thus, suggesting that modulating ΗΙF-1α or PYGL could represent a novel approach for innovative therapies.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/blood , Case-Control Studies , Cohort Studies , Cytokines/blood , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Glycogen Phosphorylase, Liver Form/blood , Granulocytes/immunology , Granulocytes/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Male , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Middle Aged , Neutrophil Activation , Peroxidase/blood , Respiratory Burst , Severity of Illness Index
2.
Eur J Immunol ; 50(9): 1283-1294, 2020 09.
Article in English | MEDLINE | ID: covidwho-670172

ABSTRACT

Studies on the interactions between SARS-CoV-2 and humoral immunity are fundamental to elaborate effective therapies including vaccines. We used polychromatic flow cytometry, coupled with unsupervised data analysis and principal component analysis (PCA), to interrogate B cells in untreated patients with COVID-19 pneumonia. COVID-19 patients displayed normal plasma levels of the main immunoglobulin classes, of antibodies against common antigens or against antigens present in common vaccines. However, we found a decreased number of total and naïve B cells, along with decreased percentages and numbers of memory switched and unswitched B cells. On the contrary, IgM+ and IgM- plasmablasts were significantly increased. In vitro cell activation revealed that B lymphocytes showed a normal proliferation index and number of dividing cells per cycle. PCA indicated that B-cell number, naive and memory B cells but not plasmablasts clustered with patients who were discharged, while plasma IgM level, C-reactive protein, D-dimer, and SOFA score with those who died. In patients with pneumonia, the derangement of the B-cell compartment could be one of the causes of the immunological failure to control SARS-Cov2, have a relevant influence on several pathways, organs and systems, and must be considered to develop vaccine strategies.


Subject(s)
Antibodies, Viral/blood , B-Lymphocytes/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Immunoglobulin Isotypes/blood , Lung/immunology , Pneumonia, Viral/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/classification , B-Lymphocytes/virology , Betacoronavirus/immunology , C-Reactive Protein/immunology , COVID-19 , Case-Control Studies , Cell Proliferation , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cross-Sectional Studies , Cytokines/genetics , Cytokines/immunology , Female , Fibrin Fibrinogen Degradation Products/immunology , Humans , Immunity, Humoral , Immunologic Memory , Lung/pathology , Lung/virology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Organ Dysfunction Scores , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Primary Cell Culture , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
3.
Nat Commun ; 11(1): 3434, 2020 07 06.
Article in English | MEDLINE | ID: covidwho-631255

ABSTRACT

The immune system of patients infected by SARS-CoV-2 is severely impaired. Detailed investigation of T cells and cytokine production in patients affected by COVID-19 pneumonia are urgently required. Here we show that, compared with healthy controls, COVID-19 patients' T cell compartment displays several alterations involving naïve, central memory, effector memory and terminally differentiated cells, as well as regulatory T cells and PD1+CD57+ exhausted T cells. Significant alterations exist also in several lineage-specifying transcription factors and chemokine receptors. Terminally differentiated T cells from patients proliferate less than those from healthy controls, whereas their mitochondria functionality is similar in CD4+ T cells from both groups. Patients display significant increases of proinflammatory or anti-inflammatory cytokines, including T helper type-1 and type-2 cytokines, chemokines and galectins; their lymphocytes produce more tumor necrosis factor (TNF), interferon-γ, interleukin (IL)-2 and IL-17, with the last observation implying that blocking IL-17 could provide a novel therapeutic strategy for COVID-19.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Cellular Senescence , Coronavirus Infections/blood , Coronavirus Infections/pathology , Cytokine Release Syndrome , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Immunologic Memory , Italy/epidemiology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , SARS-CoV-2 , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
4.
Cytometry A ; 97(7): 668-673, 2020 07.
Article in English | MEDLINE | ID: covidwho-47563

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 heavily involves all those working in a laboratory. Samples from known infected patients or donors who are considered healthy can arrive, and a colleague might be asymptomatic but able to transmit the virus. Working in a clinical laboratory is posing several safety challenges. Few years ago, International Society for Advancement of Cytometry published guidelines to safely analyze and sort human samples that were revised in these days. We describe the procedures that we have been following since the first patient appeared in Italy, which have only slightly modified our standard one, being all human samples associated with risks. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Medical Laboratory Personnel , Occupational Health , Pneumonia, Viral/blood , Specimen Handling/methods , COVID-19 , Cytokine Release Syndrome/blood , Flow Cytometry/methods , Humans , Italy , Masks , Occupational Exposure/prevention & control , Pandemics , Protective Clothing , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL